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Abstract. This paper presents our recent work on developing parallel algorithms and software for 
solving the global minimization problem for molecular conformation, especially protein folding. 
Global minimization problems are difficult to solve when the objective functions have many local 
minimizers, such as the energy functions for protein folding. In our approach, to avoid directly 
minimizing a "difficult" function, a special integral transformation is introduced to transform the 
function into a class of gradually deformed, but "smoother" or "easier" functions. An optimization 
procedure is then applied to the new functions successively, to trace their solutions back to the 
original function. The method can be applied to a large class of nonlinear partially separable functions 
including energy functions for molecular conformation and protein folding. Mathematical theory for 
the method, as a special continuation approach to global optimization, is established. Algorithms 
with different solution tracing strategies are developed. Different levels of parallelism are exploited 
for the implementation of the algorithms on massively parallel architectures. 
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1. Motivation 

We are deve lop ing  mass ive ly  parallel a lgori thms and software for molecular  con- 
formation,  especial ly  protein folding. This paper  reports on our recent progress.  

The predict ion of  protein native structures and the understanding of  how they 
fold f rom sequences of  their consti tuent amino acids is one of  the mos t  important  
and chal lenging computa t ional  science problems of  the decade. The protein folding 
p rob lem is fundamenta l  to a lmost  all theoretical studies of  proteins and protein 
related life processes.  It also has many  applications in the b iotechnology industries 
such as s t ructure-based drug design for the treatment of  important  diseases like 

polio,  cancer, and AIDS.  
Opt imiza t ion  approaches  to the protein folding problem are based on the hypoth-  

esis that the protein nat ive structure corresponds to the global m i n i m u m  of  the 
protein energy. The problem can be attacked computat ional ly  by minimizing the 
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protein energy over all possible protein structures. The structure with the lowest 
energy is presumed to be the most stable protein structure. 

The potential energy of a given protein usually is approximated by a set of 
empirical functions. They are functions of pairwise distances, bond angles, or 
dihedral angles - variables necessary to determine a protein structure, for example, 
the functions of bond lengths and angles for hydrogen bonds, of dihedral angles for 
torsional potentials, and of pairwise distances for van der Waals and electrostatic 
functions. The potential energy functions constructed by the empirical functions 
are nonlinear partially separable functions. The problems for protein folding are to 
minimize such functions and determine their global minimizers. 

Mathematically, for a protein molecule of n atoms, let x = {xi E R 3, 
i = 1, . . . ,  n} represent the molecular structure with each xi  specifying the spa- 
tial position of atom i. Then the computational problem for protein folding is to 
globally minimize a nonlinear function f ( x )  for all x E S, i.e., 

min~Esf (x  ) (1) 

where S is the set of all possible molecular structures, and f ( x )  is the energy 
function for the protein defined for all x. 

The difficulty with this approach is that global optimization problems are com- 
putationally intractable in general, and especially difficult to solve when problem 
sizes are large and objective functions contain many local minimizers. For pro- 
tein folding, the problem sizes tend to be very large with possibly thousands of 
variables, and the objective functions usually have exponentially many local min- 
imizers. Therefore, to solve the optimization problems for protein folding, special 
algorithms must be developed which exploit the problem structure. In addition, 
parallel high performance computing is essential for the solutions to be computa- 
tionally feasible. 

Our work focuses on establishing a new continuation-based approach to global 
optimization; we develop efficient parallel algorithms and software specifically for 
molecular conformation and protein folding. 

2. The Basic Approach 

The idea behind our approach is the following. To avoid directly minimizing a 
"difficult" objective function, a smoothing technique is introduced to transform the 
function into a class of gradually deformed, but "smoother" or "easier" functions. 
An optimization procedure is then applied to the new functions successively, to 
trace their solutions back to the original function. 

To obtain our smoothing transformation, a parametrized integral transformation 
is introduced, transforming a given function into a class of new functions corre- 
sponding to a set of parameter values. A transformed function is in some sense a 
coarse approximate to the original function. After applying the transform, the orig- 
inal function becomes smoother with small and narrow minimizers being removed 
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while the overall structure of the function is maintained. This allows a solution 
tracing procedure to skip less interesting local minimizers, and concentrate on 
regions with average low function values where a global minimizer is most likely 
to be located. 

Different methods can be employed to trace the solutions. For example, a 
simple method is to apply a random search procedure to the transformed functions 
successively to locate their low local minimizers. Another possible method is to 
apply local optimization procedures to each transformed function and trace a set 
of local minimizers. 

Our approach is called continuation-based, because the transformation can actu- 
ally be viewed as a special continuation process by the theory described in [6]. 
Following this theory, our new approach can be studied in a general numerical con- 
tinuation setting, and algorithms can be developed by employing standard advanced 
numerical methods. We will discuss these issues later in this paper. 

3. Transformation 

We first introduce the transformation. 

DEFINITION 1. Given a nonlinear function f ,  the transformation (f)~ for f is 
defined such that for all x, 

(f)~(x) -- C~ f f(x'):il~-~':/: dx', (2) 

or equivalently, 

( f )~(x)  = CA / f ( x  - x')e -iLx-~:']]2/~2 dx', (3) 

where A is a positive number and C;~ is a normalization constant such that 

C:X f e -IIx112/~2 dx = 1. (4) 

To understand this transformation, consider that given a random function g(x') and 
a probability distribution function p(x ~) for the random variable x ~, the expectation 
of the function g with respect to p is 

(g)p = / g(x ')p(x ')  dx'. (5) 

In light of (5), the defined transformation (2) yields a function value for (f);~ at 
any x equal to the expectation for f sampled by a Gaussian distribution function 
centered at x. 

For example, consider the following nonlinear function: 

f ( x )  = (x - 1) 2 + 0.1 sin20(x - 1) (6) 
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Fig. 1. A 1-dimensional transformation example. 

which is a quadratic function augmented with a "noise" function. The transforma- 
tion for this function can be computed: 

~2 
( f ) a ( z )  = (x - 1) 2 + -~- + O.le-(Z°)')2/4sinZO(x - 1). (7) 

The function value ( f ) ~ ( z )  for fixed :c is equal to the integration with respect to the 
product of two functions, the original function f ( x  ~) and the Gaussian distribution 
function p( z ' )  = C), e-[[~-x'll2/~'2 (Figure 1 (a)), where ,~ determines the size of the 
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A class of gradually deformed functions. 

dominant region of  the Gaussian. Since the most significant part of the integration 
is that within the dominant region of the Gaussian, (f);~(x) can be viewed as the 
average value for the original function f within a small A-neighborhood around 
x. If A is equal to zero the transformed function is exactly the original function. 
Otherwise, original function variations in small regions are averaged out, and the 
transformed function will become "smoother" (Figure 1 (b)). 
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Figure 2 shows how the function ( f ) t  in (7) behaves with increasing A. Observe 
that when A = 0.0 the function is the original function; when we increase A to 0.1, 
the function becomes "smoother"; when A is increased further to 0.2, the function 
becomes entirely "smooth". As we will show in the following sections, what we 
observed here is a general property of the transformation, i.e., for any function f ,  
the larger of A, the "smoother" the transformed function. 

4. Smoothness 

Let f be the Fourier transformation for function f ,  and (fT~ the Fourier trans- 
formation for function (f)~. Recall that the transformation {f),\ for f is just a 
convolution of f and p, where p is the Gaussian distribution function 

p(x)  = C;~e -IIx112/'\2. (8) 

Therefore the Fourier transformation for {f)~ is equal to the product of the Fourier 
transformations for f and p. The Fourier transformation for the Gaussian distribu- 
tion function is 

X2ll~ll 2 
4 (9) 

a211~ll 2 
= ( 1 0 )  

We see from (10) that if ~ ~ O, (ft-~;~ converges to f ,  and ( f ) t  converges to 

f. 
Also by (lO), for fixed A, ifa~ is large (f)x(aJ) will be very small. This implies 

that high frequency components of the original function become very small after the 
transformation. This is why the transformed function is "smoother". In addition, 
for larger A values, wider ranges of high frequency components of the original 
function practically vanish after the transformation. Therefore, the transformed 
function becomes increasingly smooth as A increases. We state these properties 
formally in the following theorem. 

THEOREM 1. Let f ,  f ,  (f),\  and (f'~x all be given and well defined. Then Ve > 
O, 3~5 oc 1/£ forfixed A, such thatVco with 11~11 > 

< c. (11) 

Proof. See [6]. [] 

From this theorem we learn that the relative size of (f)~(aJ) can be made 
arbitrarily small for all a~ with []aJ] [ greater than a small value (5. Since 6 is inversely 
proportional to A, high frequency components are removed when A is large. 

So, we have 
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5. Numerical Properties 

The definition of the transformation (2) involves high dimensional integration 
which cannot be computed in general (except perhaps by the Monte Carlo method 
which is not appropriate for our purposes because it is too expensive). So the 
transformation may not be applicable to arbitrary functions, at least numerically. 
However, this transformation does apply to a large class of nonlinear partially 
separable functions, and especially to typical molecular conformation and protein 
folding energy functions. 

Consider a large class of nonlinear partially separable functions, called gener- 
alized multilinear functions, 

I =  ZIIg , (12) 
i j 

where g~-'s are one dimensional nonlinear functions. It is easy to verify that 

(13) (f)~ = i 
i j 

Since transformation (gj.)A, for all i and j ,  involves only one dimensional integra- 
tion, the transformation for a generalized multilinear function can be numerically 
computed. 

In particular, let us consider a typical n-atom molecular conformation energy 
function, 

f ( x )  = ~ h i j ( l l x i -  xj[]) (14) 
i = l , j > i  

where x = {xi E R~, i  = 1 , . . . , n }  and hij is the pairwise energy function 
determined by ]]xi - xjl I, the distance between atoms i and j .  Because of the 
partial separability of this type of function, the transformation for f is equal to the 
sum of the transformations for the pairwise functions hij. However the computation 
for the pairwise transformation still cannot be conducted directly, because there 
is still more than one variable. Nevertheless, the following theorem provides a 
feasible way to compute the molecular energy transformation: 

THEOREM 2. Let f be defined as in (14). Then the transformation (2)for f can 
be computed using the formula 

T~ 

( f ) A ( x ) =  ~ (hij)x/~(llrijl]) (15) 
i = l , j > i  

where rij = xi - xj and 

(hij)v~j\(] Irijl ]) = cv~ ~ f hij(] Ir~jl I)e-IIr~3-r:3112/2;~2 dr~j. (16) 
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1 Choose 

{Ai: i= l , . . . ,m ,  A1 > . . . > A m = 0 }  

2 For i = 1 , . . . ,m 

minxes <f>~,  (z) 

Fig. 3. A global  min imiza t ion  procedure.  

Proof. See [6]. [] 

Note that (hij),f~,\(llrljt]) can be computed with a standard numerical integration 
technique; therefore, the transformation (f).x(z) can be computed in this fash- 
ion. 

6. Minimization 

In summary, we have introduced a parametrized integral transformation to trans- 
form the object function of a global optimization problem. Statistically, the transfor- 
mation averages the function values, and provides coarse estimates for the function 
variation. Geometrically, the transformation deforms the function into a class of 
"smoother" functions with small high frequency components removed in the trans- 
formed functions. Physically, the transformation allows a physical system to have 
small perturbations, and the transformed function reflects the average behavior of 
the system dynamics. Finally, the transformation can exploit partial separability, 
and is particularly suitable for molecular conformation and protein folding energy 
functions. 

With this transformation, a general global minimization procedure can immedi- 
ately be constructed as illustrated in Figure 3. That is, given a global minimization 
problem with a nonlinear objective function f ,  we first transform the function 
into a class of new functions (f).x,, ( f )x2 , . . . ,  (f),\,~ for/~1 > /~2 > ' ' .  "~m = 0 
with (f);~m corresponding to f .  We then apply local optimization procedures to 
the transformed functions successively, to trace their solutions back to the original 
function. Since the transformed function with a larger A value is "smoother" with 
possibly fewer local minimizers, we can start by minimizing (f).\l, and next, take 
its solution as the initial point and minimize (f),\2, and so on and so forth. Since 
a transformed function is also a coarse approximate to the original function, its 
solution should also be a rough estimate for the solution of the original function. 
So by minimizing the transformed functions successively, the whole process is 
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concentrated in regions where the solution of the original function is most likely 
to be located. 

7. Tracing Solutions 

The continuation-based global minimization approach contains two major compo- 
nents: 

1. Application and computation of the transformation (2), 
2. A solution tracing procedure. 

Clearly, different algorithms can be implemented if different solution tracing proce- 
dures are employed. An efficient solution tracing method is crucial for the algorithm 
to be numerically effective and efficient. 

In principle, tracing solutions means tracing global minimizers: the solution for 
a global minimization problem is sought for each transformed function. However, 
in a broader sense, the solutions can actually be either global or local, as long as 
they form a "path" that can lead to a global minimizer for the original objective 
function. Under some circumstances, such a "path" exists as a smooth curve, and 
then tracing solutions simply implies following a smooth solution curve determined 
by a set of transformed functions. 

A random search procedure is an example of a simple solution tracing method, 
e.g., the simulated annealing random search [1]. This method is easy to implement, 
and especially robust in the sense that the random search procedure can be designed 
to converge asymptotically to a global minimizer. However, convergence depends 
on how thoroughly the search can be conducted. Usually, an unaffordable amount 
of computation is required even for small problems. Another problem with this 
method is that the randomness introduces uncertainty. 

A more deterministic and efficient alternative is to use a local minimization 
procedure. This method applies local minimization to the transformed functions 
successively, and returns a local minimizer as the candidate for the solution to the 
given problem. The method is relatively inexpensive, and clearly more feasible for 
large scale problems, e.g., the protein problems. In particular, it can take advantage 
of well-developed local optimization techniques [5]. 

The effectiveness of this method can be illustrated in the following simple 
experiment: Consider the function in (6), and suppose that we want to find its global 
minimizer. First we transform the function to obtain a class of new functions given 
in (7). Choose A1 = 0.2, A2 = 0.1 and A3 = 0.0. We then have three transformed 
functions as shown in Figure 2 (a), (b) and (c). The function in Figure 2 (c) is 
equivalent to the original function. Then we apply a local minimization procedure 
to the transformed functions from (f)),l to (f);~3. Since (f)xl is "smooth" with 
only one local minimizer, the solution can immediately be found for it. Started from 
this solution, a local minimizer, being also a global minimizer, for (f)~2 can be 
found subsequently. Continuing the process, the global minimizer for the original 
function can be located at the end. 
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The example shows that the local minimization skips small local minimizers at 
the first stages and goes directly to a region of interest, where a global minimizer is 
very likely to be found subsequently. In general, the method may not always be this 
fortunate. For example, the early transformed functions may still have more than 
one local minimizer; the chosen minimizer may not necessarily lead to a global 
minimizer for the function at the final stage. 

To begin with the "right local minimizer", either a good initial point is provided 
based on the known knowledge of given problem, or a set of local minimizers can 
be selected and traced, and one of them may lead to a good solution. 

8. Numerical Continuation 

Our recent work [6] shows that the parametrized integral transform in (2) defines for 
f a homotopy on [0, A0] for any A0 < ec. Moreover, under appropriate assumptions, 
the transformed functions {(f)A : A C [0, A0]} determine for any given local 
minimizer x0 of (f)~0 a continuous and differentiable curve x(A) so that for all 
A E [0, A0], z(A) is a local minimizer of (f)x.  In this case, the deterministic trace 
of the solution, e.g., using local minimization, is equivalent to following a solution 
curve x(A) (or a set of such curves). This forms the theoretical basis for our 
method as a special continuation approach to global optimization. Therefore, an 
initial value problem to determine the solution curve can be derived in a simple 
and computable form: 

= -- ~ ( V 2 f ) - f l ( x ) ( A g ) A ( x )  ( 1 7 )  z t 

x0 = x(~0) (18) 

where ~72f is the Hessian of the function, and Ag the Laplace operation applied to 
the components of the gradient. This result opens another direction for the effective 
trace of the solution- solve the initial value problem using standard numerical IVP- 
methods, e.g., the predictor-corrector methods [2]. One simple example is to use 
an Euler-Newton method as shown in Figure 4. In this method, at each iteration, 
an Euler predictor is computed to start a Newton's local minimization procedure 
to find a solution on the curve. The process is continued, and the solution curve is 
followed to its end. 

9. Parallelism 

Different levels of parallelism can be exploited for continuation-based global opti- 
mization, e.g., parallel solution tracing, parallel function evaluation, and parallel 
linear algebra and optimization. 

At the solution tracing level, parallelism can be exploited by using multipro- 
cessors to generate multiple random searches, or trace a set of local minimizers in 
parallel. For the random search technique, increasing the number of processors is 
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Fig. 4. Euler-Newton prediction and correction. 

equivalent to increasing the number of trials. The more processors that are used, 
the higher the probability a solution can be found. For tracing multiple local mini- 
mizers, using multiprocessors simply reduces the total computation and increases 
the potential for finding the best possible local minimizer. In either case, the paral- 
lelism is coarsely grained with little communication required among processors but 
intensive computation for each, which is good for massively parallel computation, 
especially on the machines with high communication to computation ratios. 

Parallel function evaluation is important for both local and global optimization. 
For the continuation-based global optimization method, more than half of the total 
computation involves function evaluation, and each evaluation is costly, requiring 
numerical integration. However, for molecular conformation and protein folding, 
the energy functions to be minimized are partially separable with typically a small 
number of element functions. So for each element function, we can construct a 
function value look-up table. The function evaluation can then be conducted with 
cubic spline interpolation using the function values already calculated in the look-up 
tables. In this way, the total function evaluation cost can be reduced; moreover, the 
function value look-up tables, no matter how expensive they are, can be computed 
in parallel with perfect parallel efficiency. In this sense, we say that the function 
evaluation can be indirectly parallelized. 

The continuation-based global optimization method is rich in linear algebra 
which is good for high performance computing. When the problem is large, say, 
the problem for a protein with ten thousand atoms, the parallelism at this level can 
also be exploited by parallelizing the major linear algebra operations, e.g., linear 
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Fig. 5. A simple parallel continuation algorithm. 

system solve and local minimization. This type of parallelism has been well studied 
and understood, and can be exploited using standard techniques. 

Finally, we show, in Figure 5, how a simple parallel continuation algorithm 
can be implemented on multiprocessors. This algorithm uses a random search 
procedure to trace the solutions. 

10. Numerical Experience 

The development of the continuation-based approach to global optimization has 
been accompanied with a series of computational works [3, 4]. The algorithms 
have been implemented on parallel machines and tested with a set of molecular 
conformation problems. The results we obtained support the approach, and show 
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that the algorithms perform much more effectively and efficiently than conventional 
global optimization methods. They are also very suitable for massively parallel 
computation. We illustrate in the following some of our numerical experience 
with two particular algorithms. Both methods are continuation-based, but differ in 
solution tracing strategies. 

The first method, called the effective energy simulated annealing, uses a random 
search procedure, the simulated annealing method, to trace the solutions. Recall 
that in the simulated annealing method, a temperature parameter T is decreased 
from a positive number to zero as the iteration count increases. For each value 
of T, a number of random trials is applied to the given energy function. For the 
effective energy simulated annealing method, a function A -- c~T first is defined, 
where c~ is a constant. For each value of T, a A value is determined, which, in turn, 
defines a transformed function, called the effective energy function. A number of 
random trials is then conducted on this function to locate a solution. The parameter 
A goes to zero as T decreases, and the transformed function changes to the original 
function. The process is equivalent to tracing the solutions for a set of transformed 
functions using the Monte Carlo search with a different temperature T for each 
different transformed function. Note that if c~ is set to zero, A is equal to zero for 
all T. In this case all transformed functions are the same original function, and the 
algorithm is reduced to a standard simulated annealing procedure. 

The effective energy simulated annealing algorithm has been implemented on 
a 32-node Intel iPSC/860 at Cornell. The machine is a parallel distributed memory 
system with a hypercube interconnection network. Each processor has 8 Mbytes 
of local memory, and achieves a theoretical peak performance of 40 Mflops. The 
parallelization of the algorithm is straightforward: Multiple processors are used 
at each iteration to generate multiple sequences of trials independently. Little 
communication is required among processors except for calculating the global 
acceptance rate at the end of each iteration. The load also is well balanced: the 
number of trials is the same each processor. For more implementation details, 
readers are referred to [3]. 

The algorithm is tested with a set of small sizes of Lennard-Jones microcluster 
conformation problems, which have been well studied, and widely used as model 
problems for molecular conformation. Typical results for these problems are shown 
in Figure 6, where three pictures for clusters of n = 8, 12, 16 atoms are given. The 
curves indicate the energy levels for the solutions obtained by the algorithm with 
different c~ values. We see when c~ is equal to zero, the algorithm corresponding 
to a standard simulated annealing procedure can only find solutions with very 
high energy levels. However, within the same amount of computation time, the 
effective energy simulated annealing algorithm with a proper choice of positive 
A value can find solutions whose energy levels are already very close to the best 
known values (the bottom lines of the pictures). As a matter of fact, by applying a 
local minimization procedure started with these solutions, we obtained immediately 
the best known solutions for all the clusters. These results just show how effective 
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the method with the transformation scheme can be for molecular conformation, 
compared with a conventional global optimization technique. 
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The parallel performance for the algorithm is illustrated in Figure 7, where two 
examples are given to show how rapidly the energy levels of the solutions found 
by the algorithm decrease with increasing numbers of processors. 

The second algorithm we want to discuss is the deterministic local tracing 
algorithm, which uses local minimization as a solution tracing procedure. The 
algorithm first requires the objective function to be transformed into a class of 
new functions ( f ) ~ ,  (f) ;~2, ' - ' ,  (f);~m for a set of parameter values A1 > /~2 > 
.. .  > ),~ = 0, with (f)~m corresponding to f .  A set of starting points are 
sampled randomly so that a group of local minimizers for (f)a~ are obtained at 
the beginning. Then local minimization is applied to the remaining transformed 
functions successively to trace the changes of these local minimizers, and the one 
with the lowest function value is selected at the last stage as a candidate for the 
solution to the given problem. 

The deterministic local tracing algorithm has been implemented on a 64-node 
IBM SP1 at Comell. The SP1 is a parallel distributed memory system with a high 
performance switch installed for better interprocessor communication. Each pro- 
cessor is an IBM RS/6000 with 128 Mbytes of memory and a peak performance 
of 125 Mflops. In this implementation, multiprocessors are used to trace multiple 
local minimizers in parallel with one local minimizer for each processor. Little 
communication is required. Each processor carries a sequence of local minimiza- 
tions. Basically, the more processors used, the more local minimizers traced, and 
hence the higher the probability of obtaining a good solution. Also, the larger the 
problem sizes, the more intensive the computation for each processor. Since the 
problem sizes of practical interest tend to be very large, the machines with high 
communication to computation ratios, such as the IBM SP1, can be very suitable 
for the algorithm to achieve good performance in practice. 

The algorithm has been tested with a set of"perturbed Lennard-Jones microclus- 
ter conformation problems". Such a problem is obtained by adding in each pairwise 
Lennard-Jones potential function a periodically varying term, p sin(a;r)/r, where 
p and a3 are constants, and r is the distance between given pair of atoms. The 
functions with properly adjusted p and ~ can generate a set of even more compli- 
cated global optimization test problems. The perturbed functions reduce to pure 
Lennard-Jones problems when p is set to zero. In this test, p is set to 1, and a~ to 
10. 

Table I lists the results for some example problems (n = 16, 20, 24), obtained 
by the algorithm using different numbers of processors (p). The data in the table 
are the energy values for the solutions obtained by the algorithm. To transform the 
function, a set of values {A~ : i = 1 , . . . ,  m} are used with )~i = ( r a -  i) h, h = 0.01. 
So, ra = 1 simply implies that no transformation is used, and the algorithm is just 
a local minimization sampling procedure. The comparison between the two cases, 
m = 1 and ra = 40, shows that with transformation, the algorithm performs much 
more effectively than directly doing local minimization on the given function. In 
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Fig. 7. The parallel performance of the effective energy simulated annealing algorithm. 

the table, we can also see that as the number of processors increases, the energy 
values for the solutions obtained by the algorithm decreases rapidly. 
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TABLE I. Energy values obtained by the deterministic local tracing method for the 
perturbed Lennard-Jones problems. 
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